(b) ### (a) Neuron # (c) Simple endocrine cell | | 1 × 1 | 2 | | |---------------------|---|---|--| | Experimental groups | Normal cock | Castrated cock | | | Treatment | Both testes removed | One testis replaced | | | Results | Comb and wattles small No interest in hens Weak crow Listless fight behavior | Comb and wattles normal Interest in hens Normal crow Aggressive fight behavior Testis larger than in controls | | Epinephrine (an amine) Prostaglandin PGE₂ (an eicosanoid) Testosterone (a steroid) Table 9-1a Vertebrate endocrine glands and tissues | Gland/source | Hormone | Major physiological role* | | |-------------------------------|--------------------------------|--|--| | Adrenal gland | | | | | Steroidogenic tissue (cortex) | Aldosterone | ↑ Sodium retention | | | | Cortisol and corticosterone | ↑ Carbohydrate metabolism and sympathetic function | | | Chromaffin tissue (medulla) | Epinephrine and norepinephrine | Multiple ↑ and ↓ effects on nerves, muscles, cellular secretions, and metabolism | | | Gastrointestinal tract | Cholecystokinin | ↑ Secretion of enzymes by pancreatic acinar cell; ↑ gall-bladder contraction | | | | Chymodenin | ↑ Secretion of chymotrypsinogen from the exocrine pancreas | | | | Gastric inhibitory peptide | ↓ Gastric acid (HCI) secretion | | | | Gastrin | ↑ Gastric acid (HCI) secretion | | | | Gastrin-releasing peptide | ↑ Gastrin secretion; ↓ gastric acid (HCI) secretion | | | | Motilin | ↑ Gastric acid secretion and motility of intestinal villi | | | | Neurotensin | Enteric neurotransmitter | | | | Secretin | ↑ Bicarbonate secretion by pancreatic acinar cells | | | | Substance P | Enteric neurotransmitter | | | | Vasoactive intestinal peptide | ↑ Intestinal secretion of electrolytes | | | | | (continued on the next page) | | ## GASTRIN-releasing peptide increases Gastric acid and HCl production https://step1.medbullets.com/gastrointestinal/106036/gastric-secretion Table 9-1b Vertebrate endocrine glands and tissues | Gland/source | Hormone | Major physiological role* ↑ Salt and water excretion by kidney | | | |--------------------|---|--|--|--| | Heart (atrium) | Atrial natriuretic peptide (ANP) | | | | | Kidney | Calcitriol† | ↑ Blood Ca ²⁺ , bone formation, and intestinal absorption of Ca ²⁺ and PO ₄ ²³ | | | | | Erythropoietin (erythrocyte-
stimulating factor) | ↑ Production of red blood cells (erythropoiesis) | | | | | Renin | ↑ Conversion of angiotensinogen to angiotensin II | | | | Ovary | | | | | | Preluteal follicle | Estradiol | ↑ Female sexual development and behavior | | | | | Estrogen | Testrus and female secondary sexual characteristics; prepares reproductive system for fertilization and ovum implantation | | | | Corpus luteum | Progesterone | ↑ Growth of uterine lining and mammary glands, and maternal behavior | | | | | Relaxin | ↑ Relaxation of pubic symphysis and dilation of uterine cervix | | | | | | (continued on the next page) | | | Table 9-1c Vertebrate endocrine glands and tissues | Gland/source | Hormone | Major physiological role* | | | |---------------------------------|--|--|--|--| | Pancreas (islets of Langerhans) | Glucagon
Insulin
Pancreatic polypeptide
Somatostatin | ↑ Blood glucose, gluconeogenesis, and glycogenolysis ↓ Blood glucose; ↑ protein, glycogen, and fat synthesis ↑ ↓ Secretion of other pancreatic islet hormones ↓ Secretion of other pancreatic islets hormones | | | | Parathyroid glands | Parathormone | ↑ Blood Ca ²⁺ ; \downarrow blood PO ₄ ⁻³ | | | | Pineal (epiphysis) | Melatonin | ↓ Gonadal development (antigonadotropic action) | | | | Pituitary gland | See Table 9-2, 9-3 | | | | | Placenta | Chorionic gonadotropin
(CG, choriogonadotropin)
Placental lactogen | ↑ Progesterone synthesis by corpus luteum ↑ Fetal growth and development (possibly); | | | | | 2 | ↑ Mammary gland development in the mother | | | | Plasma angiotensinogen‡ | Angiotensin II | ↑ Vasoconstriction and aldosterone secretion;↑ Thirst and fluid ingestion (dipsogenic behavior) | | | | Testes | | | | | | Leydig cells | Testosterone | ↑ Male sexual development and behavior | | | | Sertoli cells | Inhibin
Müllerian regression factor | ↓ Pituitary FSH secretion ↑ Müllerian duct regression (atrophy) (continued on the next page) | | | Table 9-1d Vertebrate endocrine glands and tissues | Gland/source | Hormone | Major physiological role* | | | |---|--|--|--|--| | Thymus gland | Thymic hormones | ↑ Proliferation and differentiation of lymphocytes | | | | Thyroid gland
Follicular cells | Thyroxine and triiodothyronine | ↑ Growth and differentiation; ↑ metabolic rate and oxygen consumption (calorigenesis) | | | | Parafollicular cells
(or ultimobranchial glands) | Calcitonin | ↓ Blood Ca ²⁺ | | | | Most or all tissues | Leukotrienes Prostacyclins Prostaglandins Thromboxanes | ↑ Cyclic nucleotide formation ↑ Cyclic nucleotide (cAMP) formation ↑ Cyclic nucleotide (cAMP) formation ↑ Cyclic nucleotide (cGMP?) formation | | | | Selected tissues | Endorphins Epidermal growth factor Fibroblast growth factor Nerve growth factor Somatomedins | Opiate-like activity † Epidermal cell proliferation † Fibroblast proliferation † Neurite development † Cellular growth and proliferation | | | ^{* ↑} means hormone stimulates or increases indicated effect; ↓ means hormone inhibits or decreases indicated effect. Source: Adapted from Hadley, 2000. [†] The final steps in synthesis of calcitriol from vitamin D_3 occur in the kidney, but the skin and liver also play a role in its synthesis. [‡]Ángiotensinogen is produced in the liver and circulates in the bloodstream, where it is cleaved by renin to form the active hormone angiotensin II. 2 μm ### Stimuli acting on nervous system Neuron termination Neurosecretory center Hormone synthesis and packaging Neurosecretory pathway Axonal transport of secreting granules Release of neurohormone into pericapillary space Neurohemal organ Capillary Artery Vein' Target tissue Intermediate endocrine tissue Table 9-2 Hypothalamic neurohormones that stimulate or inhibit release of adenohypophyseal hormones | Hormone | Structure | Primary action in mammals | Regulation* | |---|-----------|---|--| | Stimulatory | | | | | Corticotropin-releasing hormone (CRH) | Peptide | Stimulates ACTH release | Stressful neuronal input increases secretion;
ACTH inhibits secretion | | GH-releasing hormone (GRH) | Peptide | Stimulates GH release | Hypoglycemia stimulates secretion | | Gonadotropin-releasing
hormone (GnRH) | Peptide | Stimulates release of FSH and LH | In male, low blood testosterone levels stimulate secretion; in female, neuronal input and decreased estrogen levels stimulate secretion; high blood FSH or LH inhibits secretion | | TSH-releasing hormone (TRH) | Peptide | Stimulates TSH release and prolactin release | Low body temperatures induce secretion; thyroid hormone inhibits secretion | | Inhibitory | | | | | MSH-inhibiting hormone (MIH) | Peptide | Inhibits MSH release | Melatonin stimulates secretion | | Prolactin-inhibiting
hormone (PIH) | Amine | Inhibits prolactin release | High levels of prolactin increase secretion;
estrogen, testosterone, and neuronal
stimuli (suckling) inhibit secretion | | Somatostatin (GH-inhibiting hormone, GIH) | Peptide | Inhibits release of GH and many
other hormones (e.g., TSH,
insulin, glucagon) | Exercise induces secretion; hormone is rapidly inactivated in body tissues | $^{^*}ACTH = adrenocorticotropic hormone; FSH = follicle-stimulating hormone; GH = growth hormone; LH = luteinizing hormone; MSH = melanocyte-stimulating hormone; TSH = thyroid-stimulating hormone.$ Table 9-3 Tropic hormones of the anterior pituitary gland | Hormone | Structure | Target tissue | Primary action in mammals | Regulation* | |---------------------------------------|--------------|---|---|--| | Adrenocorticotropic
hormone (ACTH) | Peptide | Adrenal cortex | Increases synthesis and secretion of steroid hormones by adrenal cortex | Cortical-releasing hormone (CRH) stimulates release; ACTH slows release of CRH | | Follicle-stimulating hormone (FSH) | Glycoprotein | Ovarian follicles (female); seminiferous tubules (male) | In female, stimulates maturation of ovarian follicles; in male, increases sperm production | GnRH stimulates release;
inhibin and steroid sex
hormones inhibit
release | | Luteinizing hormone (LH) | Glycoprotein | Ovarian interstitial
cells (female);
testicular
interstitial
cells (male) | In female, induces final maturation of ovarian follicles, estrogen secretion, ovulation, corpus luteum formation, and progesterone secretion; in male, increases synthesis and secretion of androgens | GnRH stimulates release;
inhibin and steroid
sex hormones
inhibit release | | Thyroid-stimulating hormone (TSH) | Glycoprotein | Thyroid gland | Increases synthesis and secretion of thyroid hormones | TRH induces secretion;
thyroid hormones and
somatostatin slow
release | ^{*}See Table 9-2 for key to abbreviations. # (b) Lipid-insoluble hormone Table 9-5 Comparison of lipid-soluble and lipid-insoluble hormones | . | Lipid-solu | ıblg | Lipid-inso | luble | |----------------------------------|--|----------------|--|--| | Property | Steroids Th | yroid hormones | Peptides and proteins | Catecholamines | | Feedback regulation of synthesis | Yes | Yes | Yes | Yes | | Binding to carrier proteins | Yes | Yes | Rarely | No | | Lifetime in blood plasma | Hours V 45 EV | Days | Minutes | Seconds | | Time course of action | Hours to days | Days | Minutes to hours | Seconds or less | | Receptor location | Cytosolic or
nuclear | Nuclear | Plasma membrane | Plasma membrane | | Mechanism of action | Receptor-hormone
complex stimulates
or inhibits gene
expression | | Hormone binding triggers
second-messenger or
activates intrinsic
catalytic activity | Hormone binding causes
change in membrane
potential or triggers
second-messenger
pathway | Source: Adapted from Smith et al., 1983, p. 358. Used with permission of McGraw-Hill. #### **CYCLIC NUCLEOTIDES** #### **INOSITOL PHOSPHOLIPIDS** Glycerol 1,2-Diacylglycerol (DAG) Inositol 1,4,5-trisphosphate (IP₃) CALCIUM ION FP3 Fytophsm Table 9-6 Some hormone-induced responses mediated by the cAMP pathway | Signal | Tissue | Cellular response | |-----------------------------------|------------------------------|---| | Stimulatory | | | | Epinephrine (β-adrenoreceptors) | Skeletal muscle | Breakdown of glycogen | | <u> </u> | Fat cells | Increased breakdown of lipids | | | Heart | Increased heart rate and force of contraction | | | Intestine | Fluid secretion | | | Smooth muscle | Relaxation | | Thyroid-stimulating hormone (TSH) | Thyroid gland | Thyroxine secretion | | ADH (vasopressin) | Kidney | Reabsorption of water | | Glucagon_ | Liver | Breakdown of glycogen | | Serotonin ' | Salivary gland (blowfly) | Fluid secretion | | Prostaglandin ${\rm I}_2$ | Blood platelets | Inhibition of aggregation and secretion | | Inhibitory | | | | Epinephrine | | | | $(\alpha_2$ -adrenoreceptors) | Blood platelets
Fat cells | Stimulation of aggregation and secretion
Decreased lipid breakdown | | Adenosine | Fat cells | Decreased lipid breakdown | Source: Berridge, 1985. Table 9-7 Metabolic and developmental hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |-------------------------------------|------------------------|-----------|--------------------------|--|---| | Glucagon | Pancreas (alpha cells) | Peptide | Liver, adipose
tissue | Stimulates glycogenolysis and release of glucose from liver; promotes lipolysis | Low serum glucose
increases secretion;
somatostatin inhibits
release | | Glucocorticoids
(e.g., cortisol) | Adrenal cortex | Steroid | Liver, adipose tissue | Stimulate mobilization of amino acids from muscle and glucon ogenesis in liver to raise blood glucose; increase transfer of fatty acids from adipose tissue to liver; exhibit anti-inflammatory action | Physiological stress
increases secretion;
biological clock via
CRH and ACTH
controls diurnal
changes in secretion | | Growth hormone (GH) | Anterior pituitary | Peptide | All tissues | Stimulates RNA synthesis,
protein synthesis, and tissue
growth; increases transport
of glucose and amino acids
into cells; increase lipolysis
and antibody formation | Reduced plasma glucose
and increased plasma
amino acid levels
stimulate release via
GRH; somatostatin
inhibits release | Table 9-7 Metabolic and developmental hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |-----------------------------------|---------------------------------------|------------------------|---|--|--| | Insulin | Pancreas (beta cells) | Peptide | All tissues
except most
neuronal tissue | Increases glucose and amino acid uptake by cells | High plasma glucose
and amino acid levels
and presence of
glucagon increase
secretion;
somatostatin
inhibits secretion | | Norepinephrine
and epinephrine | Adrenal medulla
(chromaffin cells) | Catecholamine | Most tissues | Increase cardiac activity;
induce vasoconstriction;
increase glycolysis,
hyperglycemia, and lipolysis | Sympathetic stimulation
via splanchnic nerves
increases secretion | | Thyroxine | Thyroid | Tyrosine
derivative | Most cells, but
especially those
of muscle, heart,
liver, and kidney | Increases metabolic rate,
thermogenesis, growth, and
development; promotes
amphibian metamorphosis | TSH induces release | Tyrosine $$CH_2$$ — CH — $COOH$ NH_2 Increased oxygen consumption and heat production Table 9-8 Mammalian hormones involved in regulating water and electrolyte balance | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |--|--------------------------------------|-------------|------------------------------|---|--| | Antidiuretic hormone
(ADH, vasopressin) | Posterior pituitary | Nonapeptide | Kidneys | Increases water reabsorption | Increased plasma osmotic pressure or decreased blood volume stimulates release | | Atrial natriuretic peptide (ANP) | Heart (atrium) | Peptide | Kidneys | Reduces Na ⁺ and water
reabsorption | Increased venous pressure stimulates release | | Calcitonin | Thyroid
(parafollicular
cells) | Peptide | Bones, kidneys | Decreases release of Ca^{2+}
from bone; increases renal
Ca^{2+} and PO_4^{3-} excretion | Increased plasma Ca ²⁺ stimulates secretion | | Mineralocorticoids (e.g., aldosterone) | Adrenal cortex | Steroid | Distal kidney
tubules | Promotes reabsorption of Na ⁺ from urinary filtrate | Angiotensin II stimulates secretion | | Parathyroid hormone
(PTH) | Parathyroid gland | Peptide | Bones, kidneys,
intestine | Increases release of Ca ²⁺ from bone; with calcitriol increases intestinal Ca ²⁺ absorption; decreases renal Ca ²⁺ excretion | Decreased plasma Ca ²⁺
stimulates secretion | ## Modified in class Table 9-9 Important mammalian reproductive hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |----------------------------------|---|-------------|------------------------------------|---|--| | Primary sex ho | rmones | | | | | | Estradiol-17 β (estrogens) | Ovarian follicle,
corpus luteum,
adrenal cortex | Steroid | Most tissues | Promotes development and
maintenance of female
characteristics and behavior,
oocyte maturation, and
uterine proliferation | Increased FSH and LH
levels stimulate secretion | | Progesterone | Corpus luteum,
adrenal cortex | Steroid | Uterus,
mammary
glands | Maintains uterine secretion;
stimulates mammary
duct formation | Increased LH and prolactin levels stimulate secretion | | Testosterone
(androgens) | Testes
(Leydig cells),
adrenal cortex | Steroid | Most tissues | Promotes development and
maintenance of male
characteristics and behavior
and spermatogenesis | Increased LH level stimulates secretion | | Other Hormon | es | | | | | | Oxytocin | Posterior pituitary | Nonapeptide | Uterus,
mammary
glands | Promotes smooth muscle contraction and milk ejection | Cervical distention and suckling
stimulate release; high
progesterone inhibits release | | Prolactin (PL) | Anterior pituitary | Peptide | Mammary glands
(alveolar cells) | Increases synthesis of milk
proteins and growth of
mammary glands; elicits
maternal behavior | Continuous secretion of PL-inhibiting hormone (PIH) normally blocks release; increased estrogen and decreased PIH secretion permit release | (a) $$H_3C$$ CH_3 CH_2 CH_3 CCH_3 CCH_3 ## Juvenile hormone β -Ecdysone Stage of development Table 9-10 Selected prostaglandins | Tissue of origin | e of origin Target tissue Primary action | | Regulation | | |--------------------------------------|--|--|--|--| | Seminal vesicles,
uterus, ovaries | Uterus, ovaries,
fallopian tubes | Potentiates smooth muscle
contraction and possibly
luteolysis; may mediate LH
stimulation of estrogen and
progesterone synthesis | Introduced during
coitus with semen | | | Kidney | Blood vessels,
especially in kidneys | Regulates vasodilation or vasoconstriction | Increased angiotensin II and epinephrine stimulate secretion; inactivated in lungs and liver | | | Neuronal tissue | Adrenergic terminals | Blocks norepinephrine-
sensitive adenylate cyclase | Neuronal activity increases release | | Table 9-11 Insect developmental hormones | Hormone | Tissue of origin | Structure | Target tissue | Primary action | Regulation | |----------------------------------|--|---------------------------------|--|--|---| | Bursicon | Neurosecretory cells
in brain and nerve
cord | Protein (MW \sim 40,000) | Epidermis | Promotes cuticle
development; induces
tanning of cuticle of
newly molted adults | Stimuli associated with
molting stimulate
secretion | | Ecdysone
(molting
hormone) | Prothoracic glands,
ovarian follicle | Steroid | Epidermis, fat
body, imaginal
disks | Increases synthesis of RNA,
protein, mitochondria, and
endoplasmic reticulum;
promotes secretion
of new cuticle | PTTH stimulates secretion | | Eclosion hormone | Neurosecretory cells in brain | Peptide | Nervous system | Induces emergence of adult from puparium | Endogenous "clock" | | Juvenile hormone
(JH) | Corpus allatum | Fatty acid
derivative | Epidermis,
ovarian
follicles, sex
accessory
glands, fat body | In larva, promotes synthesis
of larval structures and
inhibits metamorphosis;
in adult, stimulates
synthesis of yolk protein;
activates ovarian follicles
and sex accessory glands | Inhibitory and
stimulatory factors
from the brain
control secretion | | Prothoracicotropin (PTTH) | Neurosecretory cells
in brain | Small protein (MW ~ 5000) | Prothoracie gland | Stimulates ecdysone release | Various environmental
and internal cues
(e.g., photoperiod,
temperature, crowding,
abdominal stretch)
stimulate release; JH
inhibits release in
some species | ## (a) Divergent pathway ## (b) Convergent pathway